:orphan: .. _trajectories: Trajectories ************ Data stored in contiguous ragged array format, such as from Kevin Hodges's TRACK program, can be plotted using cf-plot. Example 39 - basic track plotting --------------------------------- .. image:: images/fig39.png :scale: 52% :: import cf import cfplot as cfp f=cf.read('cfplot_data/ff_trs_pos.nc')[0] cfp.traj(f) | Here a plot of relative vorticity tracks is made in the cylindrical projection. | | Example 40 - tracks in the polar stereographic projection --------------------------------------------------------- .. image:: images/fig40.png :scale: 52% :: import cf import cfplot as cfp f=cf.read('cfplot_data/ff_trs_pos.nc')[0] cfp.mapset(proj='npstere') cfp.traj(f) | | Example 41 - feature propagation over Europe -------------------------------------------- .. image:: images/fig41.png :scale: 52% :: import cf import cfplot as cfp f=cf.read('cfplot_data/ff_trs_pos.nc')[0] cfp.mapset(lonmin=-20, lonmax=20, latmin=30, latmax=70) cfp.traj(f, vector=True, markersize=0.0, fc='b', ec='b') | Data with lots of tracks takes several seconds to plot as the direction vectors have to be plotted individually whether they are on the plot or not. Example 42 - intensity legend ----------------------------- .. image:: images/fig42.png :scale: 52% :: import cf import cfplot as cfp f=cf.read('cfplot_data/ff_trs_pos.nc')[0] cfp.mapset(lonmin=-50, lonmax=50, latmin=20, latmax=80) g=f.subspace(time=cf.wi(cf.dt('1979-12-01'), cf.dt('1979-12-10'))) g=g*1e5 cfp.levs(0, 12, 1, extend='max') cfp.cscale('scale1', below=0, above=13) cfp.traj(g, legend=True, linewidth=2, colorbar_title='Relative Vorticity (Hz) * 1e5') | In this plot the tracks between 1979-12-01 and 1979-12-30 are selected and labelled according intensity with a colorbar. | | Example 42a - intensity legend with lines ----------------------------------------- .. image:: images/fig42a.png :scale: 52% :: import cf import cfplot as cfp f=cf.read('cfplot_data/ff_trs_pos.nc')[0] cfp.mapset(lonmin=-50, lonmax=50, latmin=20, latmax=80) g=f.subspace(time=cf.wi(cf.dt('1979-12-01'), cf.dt('1979-12-10'))) g=g*1e5 cfp.levs(0, 12, 1, extend='max') cfp.cscale('scale1', below=0, above=13) cfp.traj(g, legend_lines=True, linewidth=2, colorbar_title='Relative Vorticity (Hz) * 1e5') Selecting legend_lines=True plots lines only and colours them according to the sum of the start and end point divided by two. This can be a useful option when there are lots of trajectories.