cf.example_field¶
-
cf.
example_field
(n, _implementation=<CFImplementation: >)[source]¶ Return an example field construct.
New in version (cfdm): 1.8.0
See also
- Parameters
- n:
int
Select the example field construct to return, one of:
n
Description
0
A field construct with properties as well as a cell method construct and dimension coordinate constructs with bounds.
1
A field construct with properties as well as at least one of every type of metadata construct.
2
A field construct that contains a monthly time series at each latitude-longitude location.
3
A field construct that contains discrete sampling geometry (DSG) “timeSeries” features.
4
A field construct that contains discrete sampling geometry (DSG) “timeSeriesProfile” features.
5
A field construct that contains a 12 hourly time series at each latitude-longitude location.
6
A field construct that has polygon geometry coordinate cells with interior ring variables.
7
A field construct that has rotated pole dimension coordinate constructs and 2-d latitude and longitude auxiliary coordinate constructs.
See the examples for details.
- _implementation: (subclass of)
CFDMImplementation
, optional Define the CF data model implementation that provides the returned field constructs.
- n:
- Returns
Examples:
>>> f = cf.example_field(0) >>> print(f) Field: specific_humidity (ncvar%q) ---------------------------------- Data : specific_humidity(latitude(5), longitude(8)) 1 Cell methods : area: mean Dimension coords: latitude(5) = [-75.0, ..., 75.0] degrees_north : longitude(8) = [22.5, ..., 337.5] degrees_east : time(1) = [2019-01-01 00:00:00] >>> print(f.data.array) [[0.007 0.034 0.003 0.014 0.018 0.037 0.024 0.029] [0.023 0.036 0.045 0.062 0.046 0.073 0.006 0.066] [0.11 0.131 0.124 0.146 0.087 0.103 0.057 0.011] [0.029 0.059 0.039 0.07 0.058 0.072 0.009 0.017] [0.006 0.036 0.019 0.035 0.018 0.037 0.034 0.013]]
>>> f = cf.example_field(1) >>> print(f) Field: air_temperature (ncvar%ta) --------------------------------- Data : air_temperature(atmosphere_hybrid_height_coordinate(1), grid_latitude(10), grid_longitude(9)) K Cell methods : grid_latitude(10): grid_longitude(9): mean where land (interval: 0.1 degrees) time(1): maximum Field ancils : air_temperature standard_error(grid_latitude(10), grid_longitude(9)) = [[0.76, ..., 0.32]] K Dimension coords: atmosphere_hybrid_height_coordinate(1) = [1.5] : grid_latitude(10) = [2.2, ..., -1.76] degrees : grid_longitude(9) = [-4.7, ..., -1.18] degrees : time(1) = [2019-01-01 00:00:00] Auxiliary coords: latitude(grid_latitude(10), grid_longitude(9)) = [[53.941, ..., 50.225]] degrees_N : longitude(grid_longitude(9), grid_latitude(10)) = [[2.004, ..., 8.156]] degrees_E : long_name=Grid latitude name(grid_latitude(10)) = [--, ..., b'kappa'] Cell measures : measure:area(grid_longitude(9), grid_latitude(10)) = [[2391.9657, ..., 2392.6009]] km2 Coord references: grid_mapping_name:rotated_latitude_longitude : standard_name:atmosphere_hybrid_height_coordinate Domain ancils : ncvar%a(atmosphere_hybrid_height_coordinate(1)) = [10.0] m : ncvar%b(atmosphere_hybrid_height_coordinate(1)) = [20.0] : surface_altitude(grid_latitude(10), grid_longitude(9)) = [[0.0, ..., 270.0]] m
>>> f = cf.example_field(2) >>> print(f) Field: air_potential_temperature (ncvar%air_potential_temperature) ------------------------------------------------------------------ Data : air_potential_temperature(time(36), latitude(5), longitude(8)) K Cell methods : area: mean Dimension coords: time(36) = [1959-12-16 12:00:00, ..., 1962-11-16 00:00:00] : latitude(5) = [-75.0, ..., 75.0] degrees_north : longitude(8) = [22.5, ..., 337.5] degrees_east : air_pressure(1) = [850.0] hPa
>>> f = cf.example_field(3) >>> print(f) Field: precipitation_flux (ncvar%p) ----------------------------------- Data : precipitation_flux(cf_role=timeseries_id(4), ncdim%timeseries(9)) kg m-2 day-1 Auxiliary coords: time(cf_role=timeseries_id(4), ncdim%timeseries(9)) = [[1969-12-29 00:00:00, ..., 1970-01-07 00:00:00]] : latitude(cf_role=timeseries_id(4)) = [-9.0, ..., 78.0] degrees_north : longitude(cf_role=timeseries_id(4)) = [-23.0, ..., 178.0] degrees_east : height(cf_role=timeseries_id(4)) = [0.5, ..., 345.0] m : cf_role=timeseries_id(cf_role=timeseries_id(4)) = [b'station1', ..., b'station4'] : long_name=station information(cf_role=timeseries_id(4)) = [-10, ..., -7]
>>> f = cf.example_field(4) >>> print(f) Field: air_temperature (ncvar%ta) --------------------------------- Data : air_temperature(cf_role=timeseries_id(3), ncdim%timeseries(26), ncdim%profile_1(4)) K Auxiliary coords: time(cf_role=timeseries_id(3), ncdim%timeseries(26)) = [[1970-01-04 00:00:00, ..., --]] : latitude(cf_role=timeseries_id(3)) = [-9.0, 2.0, 34.0] degrees_north : longitude(cf_role=timeseries_id(3)) = [-23.0, 0.0, 67.0] degrees_east : height(cf_role=timeseries_id(3)) = [0.5, 12.6, 23.7] m : altitude(cf_role=timeseries_id(3), ncdim%timeseries(26), ncdim%profile_1(4)) = [[[2.07, ..., --]]] km : cf_role=timeseries_id(cf_role=timeseries_id(3)) = [b'station1', b'station2', b'station3'] : long_name=station information(cf_role=timeseries_id(3)) = [-10, -9, -8] : cf_role=profile_id(cf_role=timeseries_id(3), ncdim%timeseries(26)) = [[102, ..., --]]
>>> f = cf.example_field(5) >>> print(f) Field: air_potential_temperature (ncvar%air_potential_temperature) ------------------------------------------------------------------ Data : air_potential_temperature(time(118), latitude(5), longitude(8)) K Cell methods : area: mean Dimension coords: time(118) = [1959-01-01 06:00:00, ..., 1959-02-28 18:00:00] : latitude(5) = [-75.0, ..., 75.0] degrees_north : longitude(8) = [22.5, ..., 337.5] degrees_east : air_pressure(1) = [850.0] hPa
>>> f = cf.example_field(6) >>> print(f) Field: precipitation_amount (ncvar%pr) -------------------------------------- Data : precipitation_amount(cf_role=timeseries_id(2), time(4)) Dimension coords: time(4) = [2000-01-16 12:00:00, ..., 2000-04-15 00:00:00] Auxiliary coords: latitude(cf_role=timeseries_id(2)) = [25.0, 7.0] degrees_north : longitude(cf_role=timeseries_id(2)) = [10.0, 40.0] degrees_east : cf_role=timeseries_id(cf_role=timeseries_id(2)) = [b'x1', b'y2'] : ncvar%z(cf_role=timeseries_id(2), 3, 4) = [[[1.0, ..., --]]] m Coord references: grid_mapping_name:latitude_longitude
>>> f = cf.example_field(7) >>> print(f) Field: eastward_wind (ncvar%ua) ------------------------------- Data : eastward_wind(time(3), air_pressure(1), grid_latitude(4), grid_longitude(5)) m s-1 Cell methods : time(3): mean Dimension coords: time(3) = [1979-05-01 12:00:00, 1979-05-02 12:00:00, 1979-05-03 12:00:00] gregorian : air_pressure(1) = [850.0] hPa : grid_latitude(4) = [0.44, ..., -0.88] degrees : grid_longitude(5) = [-1.18, ..., 0.58] degrees Auxiliary coords: latitude(grid_latitude(4), grid_longitude(5)) = [[52.4243, ..., 51.1163]] degrees_north : longitude(grid_latitude(4), grid_longitude(5)) = [[8.0648, ..., 10.9238]] degrees_east Coord references: grid_mapping_name:rotated_latitude_longitude