cf.Field.percentile¶
-
Field.
percentile
(ranks, axes=None, interpolation='linear', squeeze=False, mtol=1)[source]¶ Compute percentiles of the data along the specified axes.
The default is to compute the percentiles along a flattened version of the data.
If the input data are integers, or floats smaller than float64, or the input data contains missing values, then output data type is float64. Otherwise, the output data type is the same as that of the input.
If multiple percentile ranks are given then a new, leading data dimension is created so that percentiles can be stored for each percentile rank.
The output field construct has a new dimension coordinate construct that records the percentile ranks represented by its data.
New in version 3.0.4.
- Parameters
- ranks: (sequence of) number
Percentile ranks, or sequence of percentile ranks, to compute, which must be between 0 and 100 inclusive.
- axes: (sequence of)
str
orint
, optional Select the domain axes over which to calculate the percentiles, defined by the domain axes that would be selected by passing each given axis description to a call of the field construct’s
domain_axis
method. For example, for a value of'X'
, the domain axis construct returned byf.domain_axis('X')
is selected.By default, or if axes is
None
, all axes are selected.- interpolation:
str
, optional Specify the interpolation method to use when the desired percentile lies between two data values
i < j
:interpolation
Description
'linear'
i+(j-i)*fraction
, wherefraction
is the fractional part of the index surrounded byi
andj
'lower'
i
'higher'
j
'nearest'
i
orj
, whichever is nearest.'midpoint'
(i+j)/2
By default
'linear'
interpolation is used.- squeeze:
bool
, optional If True then all size 1 axes are removed from the returned percentiles data. By default axes over which percentiles have been calculated are left in the result as axes with size 1, meaning that the result is guaranteed to broadcast correctly against the original data.
- mtol: number, optional
Set the fraction of input data elements which is allowed to contain missing data when contributing to an individual output data element. Where this fraction exceeds mtol, missing data is returned. The default is 1, meaning that a missing datum in the output array occurs when its contributing input array elements are all missing data. A value of 0 means that a missing datum in the output array occurs whenever any of its contributing input array elements are missing data. Any intermediate value is permitted.
- Parameter example:
To ensure that an output array element is a missing datum if more than 25% of its input array elements are missing data:
mtol=0.25
.
- Returns
Field
The percentiles of the original data.
Examples
>>> f = cf.example_field(0) >>> print(f) Field: specific_humidity ------------------------ Data : specific_humidity(latitude(5), longitude(8)) 1 Cell methods : area: mean Dimension coords: time(1) = [2019-01-01 00:00:00] : latitude(5) = [-75.0, ..., 75.0] degrees_north : longitude(8) = [22.5, ..., 337.5] degrees_east >>> print(f.array) [[0.007 0.034 0.003 0.014 0.018 0.037 0.024 0.029] [0.023 0.036 0.045 0.062 0.046 0.073 0.006 0.066] [0.11 0.131 0.124 0.146 0.087 0.103 0.057 0.011] [0.029 0.059 0.039 0.07 0.058 0.072 0.009 0.017] [0.006 0.036 0.019 0.035 0.018 0.037 0.034 0.013]] >>> p = f.percentile([20, 40, 50, 60, 80]) >>> print(p) Field: specific_humidity ------------------------ Data : specific_humidity(long_name=Percentile ranks for latitude, longitude dimensions(5), latitude(1), longitude(1)) 1 Dimension coords: time(1) = [2019-01-01 00:00:00] : latitude(1) = [0.0] degrees_north : longitude(1) = [180.0] degrees_east : long_name=Percentile ranks for latitude, longitude dimensions(5) = [20, ..., 80] >>> print(p.array) [[[0.0164]] [[0.032 ]] [[0.036 ]] [[0.0414]] [[0.0704]]]
Find the standard deviation of the values above the 80th percentile:
>>> p80 = f.percentile(80) >>> print(p80) Field: specific_humidity ------------------------ Data : specific_humidity(latitude(1), longitude(1)) 1 Dimension coords: time(1) = [2019-01-01 00:00:00] : latitude(1) = [0.0] degrees_north : longitude(1) = [180.0] degrees_east : long_name=Percentile ranks for latitude, longitude dimensions(1) = [80] >>> g = f.where(f<=p80, cf.masked) >>> print(g.array) [[ -- -- -- -- -- -- -- --] [ -- -- -- -- -- 0.073 -- --] [0.11 0.131 0.124 0.146 0.087 0.103 -- --] [ -- -- -- -- -- 0.072 -- --] [ -- -- -- -- -- -- -- --]] >>> g.collapse('standard_deviation', weights=True).data <CF Data(1, 1): [[0.024609938742357642]] 1>
Find the mean of the values above the 45th percentile along the X axis:
>>> p45 = f.percentile(45, axes='X') >>> print(p45.array) [[0.0189 ] [0.04515] [0.10405] [0.04185] [0.02125]] >>> g = f.where(f<=p45, cf.masked) >>> print(g.array) [[ -- 0.034 -- -- -- 0.037 0.024 0.029] [ -- -- -- 0.062 0.046 0.073 -- 0.066] [0.11 0.131 0.124 0.146 -- -- -- --] [ -- 0.059 -- 0.07 0.058 0.072 -- --] [ -- 0.036 -- 0.035 -- 0.037 0.034 --]] >>> print(g.collapse('X: mean', weights=True).array) [[0.031 ] [0.06175] [0.12775] [0.06475] [0.0355 ]]
Find the histogram bin boundaries associated with given percentiles, and digitize the data based on these bins:
>>> bins = f.percentile([0, 10, 50, 90, 100], squeeze=True) >>> print(bins.array) [0.003 0.0088 0.036 0.1037 0.146 ] >>> i = f.digitize(bins, closed_ends=True) >>> print(i.array) [[0 1 0 1 1 2 1 1] [1 2 2 2 2 2 0 2] [3 3 3 3 2 2 2 1] [1 2 2 2 2 2 1 1] [0 2 1 1 1 2 1 1]]