cf.example_field¶
-
cf.example_field(n, _implementation=<CFImplementation: >)[source]¶ Return an example field construct.
New in version (cfdm): 1.8.0
See also
- Parameters
- n:
int Select the example field construct to return, one of:
n
Description
0A field construct with properties as well as a cell method construct and dimension coordinate constructs with bounds.
1A field construct with properties as well as at least one of every type of metadata construct.
2A field construct that contains a monthly time series at each latitude-longitude location.
3A field construct that contains discrete sampling geometry (DSG) “timeSeries” features.
4A field construct that contains discrete sampling geometry (DSG) “timeSeriesProfile” features.
5A field construct that contains a 12 hourly time series at each latitude-longitude location.
6A field construct that has polygon geometry coordinate cells with interior ring variables.
7A field construct that has rotated pole dimension coordinate constructs and 2-d latitude and longitude auxiliary coordinate constructs.
See the examples for details.
- _implementation: (subclass of)
CFDMImplementation, optional Define the CF data model implementation that provides the returned field constructs.
- n:
- Returns
Examples
>>> f = cf.example_field(0) >>> print(f) Field: specific_humidity (ncvar%q) ---------------------------------- Data : specific_humidity(latitude(5), longitude(8)) 1 Cell methods : area: mean Dimension coords: latitude(5) = [-75.0, ..., 75.0] degrees_north : longitude(8) = [22.5, ..., 337.5] degrees_east : time(1) = [2019-01-01 00:00:00] >>> print(f.data.array) [[0.007 0.034 0.003 0.014 0.018 0.037 0.024 0.029] [0.023 0.036 0.045 0.062 0.046 0.073 0.006 0.066] [0.11 0.131 0.124 0.146 0.087 0.103 0.057 0.011] [0.029 0.059 0.039 0.07 0.058 0.072 0.009 0.017] [0.006 0.036 0.019 0.035 0.018 0.037 0.034 0.013]]
>>> f = cf.example_field(1) >>> print(f) Field: air_temperature (ncvar%ta) --------------------------------- Data : air_temperature(atmosphere_hybrid_height_coordinate(1), grid_latitude(10), grid_longitude(9)) K Cell methods : grid_latitude(10): grid_longitude(9): mean where land (interval: 0.1 degrees) time(1): maximum Field ancils : air_temperature standard_error(grid_latitude(10), grid_longitude(9)) = [[0.76, ..., 0.32]] K Dimension coords: atmosphere_hybrid_height_coordinate(1) = [1.5] : grid_latitude(10) = [2.2, ..., -1.76] degrees : grid_longitude(9) = [-4.7, ..., -1.18] degrees : time(1) = [2019-01-01 00:00:00] Auxiliary coords: latitude(grid_latitude(10), grid_longitude(9)) = [[53.941, ..., 50.225]] degrees_N : longitude(grid_longitude(9), grid_latitude(10)) = [[2.004, ..., 8.156]] degrees_E : long_name=Grid latitude name(grid_latitude(10)) = [--, ..., kappa] Cell measures : measure:area(grid_longitude(9), grid_latitude(10)) = [[2391.9657, ..., 2392.6009]] km2 Coord references: grid_mapping_name:rotated_latitude_longitude : standard_name:atmosphere_hybrid_height_coordinate Domain ancils : ncvar%a(atmosphere_hybrid_height_coordinate(1)) = [10.0] m : ncvar%b(atmosphere_hybrid_height_coordinate(1)) = [20.0] : surface_altitude(grid_latitude(10), grid_longitude(9)) = [[0.0, ..., 270.0]] m
>>> f = cf.example_field(2) >>> print(f) Field: air_potential_temperature (ncvar%air_potential_temperature) ------------------------------------------------------------------ Data : air_potential_temperature(time(36), latitude(5), longitude(8)) K Cell methods : area: mean Dimension coords: time(36) = [1959-12-16 12:00:00, ..., 1962-11-16 00:00:00] : latitude(5) = [-75.0, ..., 75.0] degrees_north : longitude(8) = [22.5, ..., 337.5] degrees_east : air_pressure(1) = [850.0] hPa
>>> f = cf.example_field(3) >>> print(f) Field: precipitation_flux (ncvar%p) ----------------------------------- Data : precipitation_flux(cf_role=timeseries_id(4), ncdim%timeseries(9)) kg m-2 day-1 Auxiliary coords: time(cf_role=timeseries_id(4), ncdim%timeseries(9)) = [[1969-12-29 00:00:00, ..., 1970-01-07 00:00:00]] : latitude(cf_role=timeseries_id(4)) = [-9.0, ..., 78.0] degrees_north : longitude(cf_role=timeseries_id(4)) = [-23.0, ..., 178.0] degrees_east : height(cf_role=timeseries_id(4)) = [0.5, ..., 345.0] m : cf_role=timeseries_id(cf_role=timeseries_id(4)) = [station1, ..., station4] : long_name=station information(cf_role=timeseries_id(4)) = [-10, ..., -7]
>>> f = cf.example_field(4) >>> print(f) Field: air_temperature (ncvar%ta) --------------------------------- Data : air_temperature(cf_role=timeseries_id(3), ncdim%timeseries(26), ncdim%profile_1(4)) K Auxiliary coords: time(cf_role=timeseries_id(3), ncdim%timeseries(26)) = [[1970-01-04 00:00:00, ..., --]] : latitude(cf_role=timeseries_id(3)) = [-9.0, 2.0, 34.0] degrees_north : longitude(cf_role=timeseries_id(3)) = [-23.0, 0.0, 67.0] degrees_east : height(cf_role=timeseries_id(3)) = [0.5, 12.6, 23.7] m : altitude(cf_role=timeseries_id(3), ncdim%timeseries(26), ncdim%profile_1(4)) = [[[2.07, ..., --]]] km : cf_role=timeseries_id(cf_role=timeseries_id(3)) = [station1, station2, station3] : long_name=station information(cf_role=timeseries_id(3)) = [-10, -9, -8] : cf_role=profile_id(cf_role=timeseries_id(3), ncdim%timeseries(26)) = [[102, ..., --]]
>>> f = cf.example_field(5) >>> print(f) Field: air_potential_temperature (ncvar%air_potential_temperature) ------------------------------------------------------------------ Data : air_potential_temperature(time(118), latitude(5), longitude(8)) K Cell methods : area: mean Dimension coords: time(118) = [1959-01-01 06:00:00, ..., 1959-02-28 18:00:00] : latitude(5) = [-75.0, ..., 75.0] degrees_north : longitude(8) = [22.5, ..., 337.5] degrees_east : air_pressure(1) = [850.0] hPa
>>> f = cf.example_field(6) >>> print(f) Field: precipitation_amount (ncvar%pr) -------------------------------------- Data : precipitation_amount(cf_role=timeseries_id(2), time(4)) Dimension coords: time(4) = [2000-01-16 12:00:00, ..., 2000-04-15 00:00:00] Auxiliary coords: latitude(cf_role=timeseries_id(2)) = [25.0, 7.0] degrees_north : longitude(cf_role=timeseries_id(2)) = [10.0, 40.0] degrees_east : cf_role=timeseries_id(cf_role=timeseries_id(2)) = [x1, y2] : ncvar%z(cf_role=timeseries_id(2), 3, 4) = [[[1.0, ..., --]]] m Coord references: grid_mapping_name:latitude_longitude
>>> f = cf.example_field(7) >>> print(f) Field: eastward_wind (ncvar%ua) ------------------------------- Data : eastward_wind(time(3), air_pressure(1), grid_latitude(4), grid_longitude(5)) m s-1 Cell methods : time(3): mean Dimension coords: time(3) = [1979-05-01 12:00:00, 1979-05-02 12:00:00, 1979-05-03 12:00:00] gregorian : air_pressure(1) = [850.0] hPa : grid_latitude(4) = [0.44, ..., -0.88] degrees : grid_longitude(5) = [-1.18, ..., 0.58] degrees Auxiliary coords: latitude(grid_latitude(4), grid_longitude(5)) = [[52.4243, ..., 51.1163]] degrees_north : longitude(grid_latitude(4), grid_longitude(5)) = [[8.0648, ..., 10.9238]] degrees_east Coord references: grid_mapping_name:rotated_latitude_longitude