Cheat Sheet


Version 3.16.2 for version 1.11 of the CF conventions.

This cheat sheet provides a summary of some key functions and methods in cf-python (also available as a printable PDF for pdf).

Operation

How to?

Install

see more

Install cf-python, including any required dependencies, and the cf-plot visualisation package using pip:

$ pip install cf-python cf-plot

Install cf-python with all of its required and optional dependencies, and the cf-plot visualisation package using conda:

$ conda install -c conda-forge cf-python cf-plot udunits2 esmpy>=8.0.0

Import

see more

Import cf-python and cf-plot:

>>> import cf
>>> import cfplot as cfp

Read

see more

Read the field constructs from a single file:

>>> fl_1 = cf.read("file.nc")
>>> fl_2 = cf.read("umfile.pp")

Read the field constructs from two or more files:

>>> fl = cf.read(['temperature.nc', 'precipitation_flux.nc'])

Read the field constructs using the * wildcard character (which reads all files in the directory that match the specified pattern):

>>> fl = cf.read('~/file*.nc')

Return field constructs by selecting the elements of the resulting * wildcard file list:

>>> fl = cf.read('~/file*.nc')[0:3]
>>> f = cf.read('~/file*nc')[-1]

Return field constructs whose identities match the given values:

>>> fl = cf.read('~/file*.nc', select='units=hPa')
>>> fl = cf.read('~/file*.nc', select='air_temperature')
>>> fl = cf.read('~/cf-python/docs/source/sample_files/file*.nc', select='ncvar%q')

Selecting field:

Select a field directly by index while reading the file:

>>> temp = cf.read("file.nc")[0]

Select a field from a field list by identity:

>>> temp = fl.select_field('air_temperature')

Select more than one field from a field list:

>>> data = fl.select('long_name=precipitation', 'ncvar%stn')

Write

see more

Write one or more field constructs to a netCDF file:

>>> cf.write(tas, 'temperature.nc')

Convert PP and UM fields files to netCDF files:

>>> cf.write(pp, 'umfile1.nc')

Collapse

see more

Basic collapses:

>>> min = f.collapse('minimum')
>>> v = f.collapse('variance')
>>> i = f.collapse('integral', measure=True)

Weighted collapses:

Weighted time average:

>>> avg = f.collapse('T: mean', weights=True)

Mean over the time and latitude axes, with weights only applied to the latitude axis:

>>> mean_latitude = f.collapse('time: latitude: mean', weights='latitude')

Weighted area means:

>>> mean = f.collapse('area: mean', weights=True)

Specifying Axes:

Temporal maxima:

>>> max = f.collapse('maximum', axes='T') # or equivalently:
>>> max = f.collapse('T: maximum')

Horizontal maximum:

>>> max = f.collapse('maximum', axes=['X', 'Y']) # or equivalently:
>>> max = f.collapse('X: Y: maximum')

Grouped collapses:

Annual maxima starting 1st December:

>>> y_max = f.collapse('T: maximum', cf.Y(month=12))

December, January, February maxima:

>>> djf_max = f.collapse('T: maximum', group=cf.djf())

Maxima for each 3-month season (DJF, MAM, JJA, SON):

>>> seas_max_3 = f.collapse('T: maximum', group=cf.seasons())

Maxima for each 4-month season (JJAS, ONDJ, FMAM):

>>> seas_max_4 = f.collapse('T: maximum', group=cf.seasons(3, 6))

Multiannual average of the seasonal means:

>>> seas_avg = f.collapse('T: mean within years T: mean over years',
...                within_years=cf.seasons(), weights=True)

Subspace

see more

Subspacing by index:

>>> new = temp[:, :, 0]
>>> new = temp[0, [2, 3, 9], [4, 8]]
>>> new = temp[..., [True, False, True, True, False]]

Subspacing by metadata:

Subspace to a new field construct whose ‘longitude’ coordinate spans only 45 degrees east, with the other domain axes remaining unchanged:

>>> new = temp.subspace(longitude=45) # or equivalently:
>>> new = temp.subspace(X=45)

Subspace to a new field construct whose longitude coordinate is 45 degrees east and latitude coordinate is -60 degrees north, with the other domain axes remaining unchanged:

>>> new = temp.subspace(X=45, Y=-60)

Subspace to a new field construct whose domain spans 34 to 72 degrees north and -25 to 45 degrees east:

>>> new = temp.subspace(latitude=cf.wi(34, 72), longitude=cf.wi(-25, 45))

Subspaces based on the time dimension:

>>> new = temp.subspace(T=cf.dt('1996-01-20'))
>>> jan_2023 = temp.subspace(T=cf.year(2023) & cf.month(1))
>>> annual_avg_61_90 = annual_global_avg.subspace(T=cf.year(cf.wi(1961, 1990)))

Accessing constructs

see more

Select constructs by identity:

>>> x = f.dimension_coordinate('latitude')
>>> x = f.auxiliary_coordinate('altitude')

Select constructs by property:

>>> d = f.dimension_coordinate(units='degrees_east')
>>> d = f.dimension_coordinate(long_name='height', units='m')

Select constructs by cell method:

>>> d = f.cell_method('mean')
>>> d = f.cell_method('mean', 'maximum')

Select constructs by axis:

>>> d = f.constructs.filter_by_axis('domainaxis1')

Select constructs by type:

>>> d = f.dimension_coordinates()
>>> d = f.constructs.filter_by_type('dimension_coordinate', 'field_ancillary')

Select constructs by netCDF variable name:

>>> d = f.constructs.filter_by_ncvar('time')
>>> d = f.constructs.filter_by_ncvar('time', 'lat')

Regridding

see more

Regridding in spherical polar coordinates:

Regrid observational data to that of the model data using bilinear interpolation:

>>> obs_regrid = obs.regrids(model, method='linear')

Regrid observational data to that of the model data conservatively:

>>> obs_regrid = obs.regrids(model, method='conservative')

Regrid observational data onto two-dimensional dimension coordinates latitude and longitude using bilinear interpolation:

>>> import numpy
>>> domain = cf.Domain.create_regular((0, 360, 5.0), (-90, 90, 2.5))
>>> obs_regrid = obs.regrids(domain, method='linear')

Regridding in cartesian coordinates:

Regrid the time axis ‘T’ of observational data with the linear method onto the grid specified in the dimension coordinate time:

>>> time = cf.DimensionCoordinate.create_regular(
...      (0.5, 60.5, 1),
...      units=cf.Units("days since 1860-01-01", calendar="360_day"),
...      standard_name="time",
...      )
>>> obs_regrid = obs.regridc([time], axes='T', method='linear')