cf.Data.masked_all¶
-
classmethod
Data.
masked_all
(shape, dtype=None, units=None, calendar=None, chunks='auto')[source]¶ Return an empty masked array with all elements masked.
See also
- Parameters
- shape:
int
ortuple
ofint
The shape of the new array. e.g.
(2, 3)
or2
.- dtype: data-type
The desired output data-type for the array, e.g.
numpy.int8
. The default isnumpy.float64
.- units:
str
orUnits
The units for the new data array.
- calendar:
str
, optional The calendar for reference time units.
- chunks:
int
,tuple
,dict
orstr
, optional Specify the chunking of the underlying dask array.
Any value accepted by the chunks parameter of the
dask.array.from_array
function is allowed.By default,
"auto"
is used to specify the array chunking, which uses a chunk size in bytes defined by thecf.chunksize
function, preferring square-like chunk shapes.- Parameter example:
A blocksize like
1000
.- Parameter example:
A blockshape like
(1000, 1000)
.- Parameter example:
Explicit sizes of all blocks along all dimensions like
((1000, 1000, 500), (400, 400))
.- Parameter example:
A size in bytes, like
"100MiB"
which will choose a uniform block-like shape, preferring square-like chunk shapes.- Parameter example:
A blocksize of
-1
orNone
in a tuple or dictionary indicates the size of the corresponding dimension.- Parameter example:
Blocksizes of some or all dimensions mapped to dimension positions, like
{1: 200}
, or{0: -1, 1: (400, 400)}
.
New in version 3.14.0.
- shape:
- Returns
Data
A masked array with all data masked.
Examples
>>> d = cf.Data.masked_all((2, 2)) >>> print(d.array) [[-- --] [-- --]]
>>> d = cf.Data.masked_all((), dtype=bool) >>> d.array masked_array(data=--, mask=True, fill_value=True, dtype=bool)