cf.Field.pad_missing¶
-
Field.
pad_missing
(axis, pad_width=None, to_size=None, inplace=False)[source]¶ Pad an axis with missing data.
The field’s data and all metadata constructs that span the axis are padded.
New in version 3.16.1.
- Parameters
- axis:
str
orint
Select the domain axis which is to be padded, defined by that which would be selected by passing the given axis description to a call of the field construct’s
domain_axis
method. For example, for a value of'X'
, the domain axis construct returned byf.domain_axis('X')
is selected.- pad_width: sequence of
int
, optional Number of values to pad before and after the edges of the axis.
- to_size:
int
, optional Pad the axis after so that the new axis has the given size.
- inplace:
bool
, optional If True then do the operation in-place and return
None
.
- axis:
- Returns
Examples
>>> f = cf.example_field(6) >>> print(f) Field: precipitation_amount (ncvar%pr) -------------------------------------- Data : precipitation_amount(cf_role=timeseries_id(2), time(4)) Dimension coords: time(4) = [2000-01-16 12:00:00, ..., 2000-04-15 00:00:00] gregorian Auxiliary coords: latitude(cf_role=timeseries_id(2)) = [25.0, 7.0] degrees_north : longitude(cf_role=timeseries_id(2)) = [10.0, 40.0] degrees_east : cf_role=timeseries_id(cf_role=timeseries_id(2)) = [x1, y2] : altitude(cf_role=timeseries_id(2), 3, 4) = [[[1.0, ..., --]]] m Coord references: grid_mapping_name:latitude_longitude >>> print(f.array) [[1. 2. 3. 4.] [5. 6. 7. 8.]] >>> g = f.pad_missing('T', (0, 5)) >>> print(g) Field: precipitation_amount (ncvar%pr) -------------------------------------- Data : precipitation_amount(cf_role=timeseries_id(2), time(9)) Dimension coords: time(9) = [2000-01-16 12:00:00, ..., --] gregorian Auxiliary coords: latitude(cf_role=timeseries_id(2)) = [25.0, 7.0] degrees_north : longitude(cf_role=timeseries_id(2)) = [10.0, 40.0] degrees_east : cf_role=timeseries_id(cf_role=timeseries_id(2)) = [x1, y2] : altitude(cf_role=timeseries_id(2), 3, 4) = [[[1.0, ..., --]]] m Coord references: grid_mapping_name:latitude_longitude >>> print(g.array) [[1.0 2.0 3.0 4.0 -- -- -- -- --] [5.0 6.0 7.0 8.0 -- -- -- -- --]] >>> h = g.pad_missing('cf_role=timeseries_id', (0, 1)) >>> print(h) Field: precipitation_amount (ncvar%pr) -------------------------------------- Data : precipitation_amount(cf_role=timeseries_id(3), time(9)) Dimension coords: time(9) = [2000-01-16 12:00:00, ..., --] gregorian Auxiliary coords: latitude(cf_role=timeseries_id(3)) = [25.0, 7.0, --] degrees_north : longitude(cf_role=timeseries_id(3)) = [10.0, 40.0, --] degrees_east : cf_role=timeseries_id(cf_role=timeseries_id(3)) = [x1, y2, --] : altitude(cf_role=timeseries_id(3), 3, 4) = [[[1.0, ..., --]]] m Coord references: grid_mapping_name:latitude_longitude >>> print(h.array) [[1.0 2.0 3.0 4.0 -- -- -- -- --] [5.0 6.0 7.0 8.0 -- -- -- -- --] [ -- -- -- -- -- -- -- -- --]]
>>> print(f.pad_missing('time', to_size=6)) Field: precipitation_amount (ncvar%pr) -------------------------------------- Data : precipitation_amount(cf_role=timeseries_id(2), time(6)) Dimension coords: time(6) = [2000-01-16 12:00:00, ..., --] gregorian Auxiliary coords: latitude(cf_role=timeseries_id(2)) = [25.0, 7.0] degrees_north : longitude(cf_role=timeseries_id(2)) = [10.0, 40.0] degrees_east : cf_role=timeseries_id(cf_role=timeseries_id(2)) = [x1, y2] : altitude(cf_role=timeseries_id(2), 3, 4) = [[[1.0, ..., --]]] m Coord references: grid_mapping_name:latitude_longitude